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We present the results of a Monte Carlo study of the three-dimensional X Y  
model and the three-dimensional antiferromagnetic three-state Potts model. In 
both cases we compute the difference of the free energies of a system with 
periodic and a system with antiperiodic boundary conditions in a neighborhood 
of the critical coupling. From the finite-size scaling behaviour of this quantity 
we extract values for the critical temperature and the critical exponent v that are 
compatible with recent high-statistics Monte Carlo studies of the models. The 
results for the free energy difference at the critical temperature and for the 
exponent v confirm that both models belong to the same universality class. 

KEY WORDS: Monte Carlo simulation; three-state antiferromagnetic Potts 
model; X Y  model; three dimensions; universality class. 

1. I N T R O D U C T I O N  

U e n o  et aL I ~) po in t ed  ou t  tha t  the differences in the free energy ,dF of  

systems with  different b o u n d a r y  cond i t ions ,  such as per iodic  and 

an t ipe r iod ic  b o u n d a r y  cond i t ions ,  m igh t  be a powerfu l  a l te rna t ive  to the 
fou r th -o rde r  c u m u l a n t  (2) in the s tudy of  cri t ical  p h e n o m e n a .  F o r  the Ising 

mode l  an t ipe r iod ic  b o u n d a r y  cond i t i ons  force an  interface into  the system, 

and  A F  can be in te rp re ted  as the interface free energy.  In the case of  O ( N ) -  

inva r i an t  vec to r  mode l s  wi th  N~> 2, such as the X Y  m o d e l  ( N =  2) and  the 

classical  He i s enbe rg  m o d e l  ( N =  3), however ,  the con t i nuous  symmet ry  of  
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the model prevents the creation of a sharp interface and d F  rather becomes 
a measure for the helicity modulus. 

Ueno et al. II) give, based on previous results, 13) the scaling relation 

/ i F  = f (  t L  ~/v) ( 1 ) 

where t = ( T -  Tc) /Tc  is the reduced temperature, L is the linear extension 
of the lattice, and the reduced free energy F is given by F = - l n  Z, where 
Z is the partition function of the system. It is important to note that the 
above relation requires that all directions of the lattice scale with L. It 
follows that the crossings o f / IF ,  plotted as a function of the temperature 
for different L, provide estimates for the critical temperature. Furthermore, 
the energy difference dE,  which is the derivative of ~IF with respect to the 
inverse temperature, scales as 

/ IE  ~: Ll/v (2) 

where v is the critical exponent of the correlation length ~. 
The drawback of the method outlined above is that in general it is 

hard to obtain free energies from Monte Carlo simulations. The standard 
approach is to measure AE at a large number of temperatures and perform 
a numerical integration starting from T = 0 or T = c~, where the flee energy 
is known, up to the temperature in question. In refs. 4 and 5, however, one 
of the authors presented a version of the cluster algorithm c6' 7) that gives 
direct access to the interface free energy of Ising systems ( N =  1). It was 
demonstrated that the crossings of / IF converge even fas.ter than the 
crossings of the fourth-order cumulant in the case of the 3D Ising model 
on a simple cubic lattice. 

In the present paper we show how the algorithm of refs. 4 and 5 can 
be generalized to O(N)-invariant vector models with N >  1 and apply it to 
the 3D X Y  model on a simple cubic lattice. 

The 2-transition of helium from the fluid He I phase to the superfluid 
He II phase at low temperature is supposed to share the 3D X Y  univer- 
sality class. It is the experimentally best studied second-order phase trans- 
ition. The superfluid density corresponds to the helicity modulus of the X Y  
model. 18) The quoted error bars of the measured value v =  0.6705(6) ~9~ are 
smaller than that of the theoretical predictions for the 3D X Y  universality 
class. 

Banavar et al. ~~ conjectured that the 3D antiferromagnetic (AF) 
three-state Potts model belongs to the same universality class as the 3D X Y  
model. Ueno et al. II~ implemented "favorable" and "unfavorable" boundary 
conditions for the 3D AF three-state Potts model. They found that the 
corresponding /IF is incompatible with that found for the 3D X Y  model. 
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They also obtained an estimate for the critical exponent of the correlation 
length v = 0.58(1 )c~ that is not consistent with the exponent v = 0.669(2) ( ~  
of the 3D two-component (~b2)2-theory. This result has to be compared 
with recent high-precision studies of the 3D AF three-state Potts 
model, c1:'13~ where the XY exponents and critical amplitudes were 
recovered to high accuracy. To clarify this point, we discuss how 
antiperiodic boundary conditions can be implemented for the 3D AF three- 
state Potts model. Our numerical findings are then compared with the 3D 
XY results. 

2. O(N)  M O D E L S  W I T H  F L U C T U A T I N G  B O U N D A R Y  
C O N D I T I O N S  

We consider a simple cubic lattice with extension L in all directions. 
The uppermost layer of the lattice is regarded as the lower neighbor plane 
of the lowermost plane. An analogous identification is done for the other 
two lattice directions. The O(N) model is defined by the classical 
Hamiltonian 

H(s, bc )=  - ~ J<0.>s;. sj (3) 
<u> 

where st are unit vectors with N components. When periodic (p) boundary 
conditions (bc) are employed, then J<~j> = 1 for all nearest-neighbor pairs. 
When antiperiodic (ap) boundary conditions are employed, then 
J<~j> = - I  for bonds ( / j )  connecting the lowermost and uppermost planes 
of the lattice, while all other nearest-neighbor pairs keep J<,j> = 1. The free 
energy difference is now given by 

AF=  Fap - -  F p  = --In Zap (4) 
Zp 

where Zap and Zp are the partition functions with antiperiodic and periodic 
boundary conditions, respectively. 

In order to obtain the ratio of partition functions Z a p / Z  p w e  consider 
a system that allows both periodic and antiperiodic boundary conditions. 
The partition function of this system is given by 

z=E 1-I I ds~exp[ -KH(s, bc) ] (5) 
be i~A SN-I 

where K is the inverse temperature. The fraction of configurations with 
antiperiodic boundary conditions is given by the ratio Zap/Z, 
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Zap= I-~iE A JSN-I dsi exp[ -KH(s,  ap)] 
Z Z 

Zbr I-L~A ~s,,,_, ds~ exp[ -KH(s, be)] fib~. ~p 
Z 

= (6bc. ap) (6) 

where 6bc. ap= 1 for antiperiodic boundary conditions and fibc. ap=0 for 
periodic boundary conditions. An analogous result can be found for 
periodic boundary conditions. Now we can express the ratio Zap/Z p as a 
ratio of observables in this system, 

Z.___2p=Z~p/Z ( 6b~..p) (7) 
Zp Zp/Z (6b~.p) 

and is hence accessible in a single Monte Carlo simulation. 

3. B O U N D A R Y  FLIP A L G O R I T H M  FOR O(N) M O D E L S  

We shall now describe an efficient algorithm to update the system 
explained above, where the type of boundary condition is a random 
variablej4, 51 

The algorithm is based on a standard cluster algorithmJ 6'~1 For the 
Ising model it can be explained as follows. First the bonds are deleted with 
the standard probability 

Pa = exp[ - K( I s~sjl + J< ij> SiSj) ] (8) 

or otherwise frozen. After deleting or freezing the bounds of the system one 
searches for an interface of deleted bonds that completely cuts the lattice in 
the z direction. If there is such an interface, the spins between the bottom 
of the system and this interface and the sign of the coupling J<q> 
connecting top and bottom are flipped simultaneously. This is a valid 
update, since the bonds in the interface are deleted and the value of 
J<o.>sisj for i in the lowermost a n d j  in the uppermost plane is not changed 
when we alter the sign of J<o.~ and si. 

In order to apply this algorithm to O(N) models, one has to consider 
each component of the spin as an embedded Ising variable. In the delete 
probability we just have to replace the Ising spins by a given component 
of the O(N) spin. 

Note that these embedded Ising models to not couple with each other. 
The above boundary flips can be done independently for any component. 
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The simplest approach would be to simulate an ensemble that 
contains also configurations which have different boundary conditions for 
the different components. However, we avoided these configurations with 
mixed boundary conditions. We only allowed a flip of the boundary 
condition when it could be done for all components simultaneously. 

In our simulations we alternate this boundary-flip update with 
standard single-cluster updatesJ vl 

4. THE A N T I F E R R O M A G N E T I C  T H R E E - S T A T E  POTTS M O D E L  
A N D  A N T I P E R I O D I C  B O U N D A R Y  C O N D I T I O N S  

The three-state AF Potts model in three dimensions is defined by the 
partition function 

Z =  I-I Z exp - K  E 6o,..j (9) 
l E A  a t =  l ( i , j )  

where the summation is taken over all nearest-neighbor pairs of sites i and 
j on a simple cubic lattice ,4, and K =  ]Jl/kaT is the reduced inverse 
temperature. 

One has to note that a change of the boundary interaction to negative 
sign is incompatible with the symmetries of the classical Hamiltonian. The 
change of the sign of J from minus to plus would mean that there is only 
one favorable value of the neighboring spin instead of two. Hence changes 
in the free energy would also arise from local distortion of the system. 
However, when one adds or removes one layer from the lattice, such that 
the extension in one direction, measured in units of lattice spacings, 
becomes an odd number, one obtains the global frustration we are aiming 
at. Hence we define LIE of a n  L 3 system by 

, ~ E ( L , L , L ) = � 8 9  (10) 

where the energy E of the model is given by 

E =  y. 6o,,o~ ( l l )  
( i , j )  

We were not able to find an efficient algorithm that allows us to add 
or to remove a layer of sites from the lattice. Hence we had to rely on the 
standard integration method to obtain the corresponding AF for the Potts 
model, as opposed to the XY model. 
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5. N U M E R I C A L  RESULTS 

5.1. 3D X Y  Model  

On lattices of the size L = 4 ,  8, 16, 32, and 64 we performed simula- 
tions at Ko=0.45420, which is the estimate for the critical coupling 
obtained in ref. 14. As explained above, we performed single-cluster 
updates ~7) in addition to the boundary updates. We have chosen the 
number No of the single-cluster updates per boundary update such that N O 
times the average cluster volume is approximately equal to the lattice 
volume. We performed a measurement after each boundary update. The 
number of measurements was 100,000 for all lattice sizes. 

First we determined the critical coupling Kc using the crossings of 
Zap/Zp. For the extrapolation of (~bc, ap) and (~b~.p) to couplings K 
other than the simulation coupling Ko we used the reweighting formula t~5) 

'~-'~'i ~br x exp[ ( - K + Ko) Hi] 
(6be, .,:)(K ) = (12) 

~ exp[ ( - K + go) H~] 

where i labels the configurations generated according to the Boltzmann 
weight at Ko, bc(i) denotes the boundary condition of the ith configura- 
tion, and x has to be replaced by either p or up. We computed the 
statistical errors from jackknife binning ~t6~ applied to the ratio (~br 
(~bc.p)" The extrapolation gives good results only within a small 
neighborhood of the simulation coupling K0. This range shrinks with 
increasing volume of the lattice. However, Fig. 1 shows that in a sufficiently 
large neighborhood of the crossings of Zap/Zp the extrapolation performs 
well. The results for the crossings are K=0.45439(22), 0.45412(I0), 
0.454138(31), and 0.454147(14) for L = 4  and 8, 8 and 16, 16 and 32, and 
32 and 64, respectively. 

The convergence of the crossings of Zap/Zp toward K~ is excellent. 
Even with the high statistical accuracy that we reached, all crossings 
starting from L = 4  and L = 8 are compatible within error bars. The 
convergence of the crossings is governed by 

Kr .... (L )=Kc( I  +cons t .  L -~'+~/")+ ... ) (13) 

where co is the correction-to-scaling exponent/2" ,7) We performed a two- 
parameter fit with v=0.669 and co=0.780 ~]) being fixed. Taking all 
crossings, we obtain Kc= 0.454142(13) and when discarding the L = 4  and 
8 crossing, we get Kc = 0.454148(15), where both times the correction term 
is compatible with zero. Note that we obtained Kc=0.45420(2)(]4) (or 
reanalyzed Kc=0.45419(2) 1131) from the crossing of the fourth-order 
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Fig. 1. The ratio Zap/Zp for the 3D XYmodel on lattices of size L = 4  up to L=64.  The 
curves are obtained from simulations at K=0.45420 in combination with reweighting to 
couplings in the neighborhood. The dashed lines give the statistical errors obtained by a 
jackknife analysis. 

cumulant. From the scaling behavior of the magnetic susceptibility in the 
high-temperature phase we obtained K c = 0.45417(1). t |4) All these estimates 
are consistent within two standard deviations. 

At the critical coupling Zap/Zp converges with increasing L like 

Zap Zap _ ~... ) 
(L) = - ~ 0  (oo)(1 + const .L  (14) 

Zp 

In Table I we give the value of  Zap/Z p at our  estimate of  the critical 
coupling. The result is stable with increasing L. Hence we take the result 
for L = 64, Z~p/Zp = 0.322(8), as our final estimate for the infinite-volume 
limit. Taking the logarithm, we obtain AF= 1.13(2). 

We extracted the critical exponent v of  the correlation length from the 
L dependence of the energy difference AE. The values for AE at the critical 
coupling are given in Table I. We performed fits according to Eq. (2) for 
the AE at the new estimate of the critical coupling and at the edges of 
the error bars. The  results, which are summarized in Table II, are stable 
within error bars when we discard data with small L from the fit. We take 
the fit including the lattice sizes L =  16, 32, and 64 as our final result 
v = 0.679(7), where the error due to the uncertainty in the critical coupling 

822/77/34-27 
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Table I. Results of the Ratio Zap/Zp 
and AE at the Critical 

Coupling Kc= 0.45415(2)" 

L Zar,/Zp zlE 

4 0.3245(19)(1) 17.64(13)(I) 
8 0.3242(19)(3) 52.18(41 )(4) 

16 0.3234(21 ) ( 9 )  144.7(1.3)(3) 
32 0.3224( 20 )( 27 ) 407.0( 4.6 )( 2.2 ) 
64 0.3216(25)(72) 1113.0(13.0)(18.0) 

"The number in the second parentheses gives the 
uncertainty due to the error bar of the critical 
coupling. 

is t aken  into account .  Pe r fo rming  a s imilar  analysis  at ou r  o ld  es t imate  for 

the cri t ical  coup l ing  K c = 0 . 4 5 4 1 9 ( 2 )  leads to v = 0 . 6 7 0 ( 7 ) ,  which  is m o r e  
consis tent  wi th  the accura te  va lue  v = 0.669(2) ~]~) ob t a ined  f rom r e s u m m e d  

p e r t u r b a t i o n  theory.  

5.2 .  3 D  A F  T h r e e - S t a t e  P o t t s  M o d e l  

F o r  the 3D  A F  three-s ta te  Po t t s  m o d e l  we c o m p u t e d  z lF  by the 
in tegra t ion  me thod .  At  K =  0 the free energy  is g iven by 

F =  V l n  3 (15) 

Table II. Estimate of the Critical Exponent v Obtained from the Fit 
of the Surface Energy Density Following Eq. (2) at Kc=0.45415(2)  ~ 

Estimates for v from zJE 

K,. - zlK,. Kr K~ + zlK~ 

# v G v G v G 

0 0.6771(45) 1 . 8 0  0.6756(44) 0 . 7 8  0.6741(44) 0.77 
I 0.6813(30) 0 . 9 6  0.6783(29) 0 . 5 3  0.6753(29) 0.32 
2 0.6833(50) 1 . 6 7  0.6787(49) 1 . 0 5  0.6743(48) 0.57 

Here # gives the number of discarded data points with small L and G denotes X"/degrees 
o f freedom. 
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where V is the number of lattice sites. Hence 

A F = � 8 9  (16) 

at K =  0. For L = 4 we measured AE at 83 different K values, starting at 
K =  0.01 going up in steps o f / I K =  0.01 until we reached K =  0.83. In the 
large-L limit, /IF stays 0 up to the critical point. Therefore we started the 
integration at a K such that we observed LIE>0 within our statistical 
accuracy for the larger lattices. For L---8 we measured /IE at 67 different 
K values, starting at K--0.50 going up in steps of AK=0.005 until we 
reached K =  0.83. And for L = 16 we measured/IE at 52 different K values, 
starting at K--0.70 going up in steps of /IK=0.0025 until we reached 
K =  0.83. 

All runs consisted of 10,000 measurements. Per measurement we 
performed such a number of single-cluster updates that the lattice volume 
was approximately covered by the average cluster volume. Then we per- 
formed the integration using the trapeze rule. The result is given in Fig. 2. 
The curves for L = 4  and L = 8  cross at K=0.8155(18) and the curves for 
L = 8  and L = 1 6  at K=0.8166(8), which is in good agreement with 
K,.=0.81563(3)J TM The values of ~IF at Kc=0.81563 are summarized in 
Table III. Our statistical accuracy degrades with increasing lattice size. 

2 . 2  i i i i i 
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Fs 1.2 L = 4  -" ~'. 

1.0 

0.8 

0.6 

0.4 ' ' ' ' ' 
0 .800 0.805 0 .810 0.815 0.820 0.825 0.830 

K 

Fig. 2. The  free energy  difference A F  for the 3D A F  Pot t s  mode l  o n  lattices o f  size L = 4, 8, 
a n d  16. The  curves  are ob ta ined  f rom numer ica l  in tegra t ion  o f  dE. The d a s h e d  lines give the 

stat is t ical  e r ro rs  ob t a ined  by  a j ackkni fe  analysis .  
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Table III. AF and AE for the 3D AF 
3-State Potts Model  at K =  0.81563(3)  ~ 

L AF ,dE 

4 1.165(8) 6.68(2) 
8 1 . 1 5 7 ( 1 3 )  19.10(9)(1) 

16 1 . 1 3 0 ( 2 0 )  53.36(30)(6) 
32 152.92(92)(48) 
64 431.8(2.6)(3.7) 

o The number in the second parentheses of AE 
gives the uncertainty due to the error bar of 
the critical coupling. 

Hence we skipped the s imulat ions of  larger lattice sizes. However,  a l ready 
for the small  lattices the results at Kc=0 .81563  are ra ther  stable and 
systematic errors due to correct ions to scaling should be small. The result 
A F =  1.13(2) for L =  16 at the critical point  nicely agrees with our  final 
result A F =  1.13(2) for the 3D XY model.  One should note that  for the 3D 
Ising model  one obtains  A F =  0.605(6), ~5) which is only a little larger than 
half  of the X Y  value. 

At Kc=0 .81563  we s imulated the L x L x L - 1  and L x L x L + I  
lattices for sizes up to L = 64 with a statistics of  100,000 measurements.  Fo r  
the cubical lattices we used the results of  our  previous study, (~3) where 
200,000 measurements  were performed. The resulting AE are summarized  
in Table III. We performed fits according Eq. (2) for the AE at the critical 
coupl ing and at the edges of  the error  bars. The results are summarized  in 
Table IV. The fits including all lattice sizes give an unacceptably  large 

Table IV. Results for the Critical Exponent v 
Obtained f rom the Fit Following Eq. (2) ~ 

K,. - AK~ K,. K~ + AK,. 

# v G v G v G 

0 0.8988(49) 2 5 2 8  0.9130(43) 3 3 9 2  0.8598(42) 1903 
1 0.6681(19) 1 .21  0.6664(16) 1 . 9 2  0.6650(18) 1.73 
2 0.6651(32) 1 . 1 0  0.6629(26) 1 . 0 4  0.6605(31) 0.45 

o Here # denotes the number of discarded data points with small L, and G denotes x2/degrees 
o f freedom. 
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z2/degrees of freedom, which in the following will be denoted as G. 
Discarding the L = 4 data, we find that the value of G becomes acceptable, 
and when discarding also the L = 8 data the result for v remains stable 
within error bars. Hence we conclude that systematic errors due to correc- 
tions to scaling are smaller than our statistical errors. We take v = 0.663(4) 
from the fit including the lattice sizes L = 16, 32, and 64 as our final result, 
where the error due to the uncertainty in the critical coupling is taken into 
account. 

6. C O N C L U S I O N S  

In the present work we have shown how the boundary algorithm of 
refs. 4 and 5 can be applied to O(N) models with N >  1. We demonstrated 
in the case of the 3D XY model that critical properties of the model can 
be nicely extracted from the ratio of the partition functions Zap/Zp. The 
accuracy of the results for the critical coupling and the critical exponent of 
the correlation length v are compatible with that obtained from the fourth- 
order cumulant. 

We showed how antiperiodic boundary conditions can be implemented 
for the 3D AF Potts model. The value of the free energy difference 
AF= Fap--Fp at the critical coupling is in good agreement with that found 
for the 3D XY model. The value v--0.663(4) obtained from the scaling 
behavior of the energy difference AE at the critical coupling is as accurate 
as our previous estimate, which we obtained from the slope of the fourth- 
order cumulant. We conclude that those facts strongly support that the 3D 
AF three-state Potts model and the 3D XY model belong to the same 
universality class. The confirmation of the conjecture by Banavar et al. also 
has practical implications. The 3D AF three-state Potts model is simpler to 
simulate than the 3D XY model. The application of multispin-coding 
techniques, which have been used to speed up simulations of the Ising 
model, ~js) might also allow further improvements of the 3D AF three-state 
Potts results. 

For a detailed comparison with previous results see ref. 13. 
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